CONHECIMENTOS ESPECÍFICOS

Julgue os itens que se seguem, acerca da estatística descritiva.

- 51 Na distribuição da quantidade de horas trabalhadas por empregados de certa empresa, é sempre possível determinar a média e a mediana amostral; porém é possível que essa distribuição não possua moda.
- 52 Se a média das diferenças salariais entre homens e mulheres for nula, se a variável D representar a diferença salarial entre um homem e uma mulher, e se a média da variável D^2 for igual a 2.500, então o desvio padrão da variável D será inferior a 100.
- 53 Considere que a tabela abaixo apresente a evolução da quantidade de adultos e jovens que trabalham em determinada empresa. Nesse caso, é correto afirmar que houve aumento de 100% na quantidade de adultos entre 2010 e 2012. Por outro lado, a quantidade de jovens sofreu redução de 100%.

ano	adultos	jovens
2010	50	10
2011	76	5
2012	100	0

54 Uma distribuição leptocúrtica possui menor curtose relativamente à platicúrtica.

Com relação à teoria de probabilidades, julgue os próximos itens.

- Se f(x) for uma função de densidade de probabilidade definida em $[0, \infty)$ e se $g(k) = \int_{k=0}^{k+1} f(x) dx$, então $\sum_{k=0}^{\infty} g(k) = 1$.
- **56** Se X_1 , X_2 , ..., X_n for uma amostra aleatória simples suficientemente grande e se $T_n(X)$ for uma estatística qualquer, então a distribuição da amostra da estatística será normal.
- 57 Caso os eventos A e B sejam tais que P(A) > P(B) e P(B|A) = 1/3, então P(A|B) > 0.30.
- 58 Com base na distribuição Normal, é correto afirmar que $\int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx > 2.$
- **59** Se A e B forem eventos tais que P(A) = 0.15 e P(B) = 0.30, então P(A|B) > 1/2.
- **60** Se *A* e *B* forem eventos disjuntos, então P(A) = 1 P(B).

No que se refere a distribuições discretas, julgue os seguintes itens.

- 61 Para a distribuição conjunta $P(N=n, X=x) = \frac{1}{6} \times \binom{n}{x} p^{x} (1-p)^{n-x}, \text{ em que } n=1, ..., 6 \text{ e}$ x é uma contagem, as variáveis N e X são dependentes.
- 62 Para a distribuição de probabilidades $P(X = k) = 2^{-k}$, em que k = 1, 2, ..., a média e a variância são iguais a 2.
- 63 Em toda distribuição binomial, a média será menor que a variância.
- A aproximação da distribuição binomial pela normal não se aplica com base no teorema limite central, visto que a binomial não se relaciona com uma soma de variáveis aleatórias.

Com base em distribuições contínuas, julgue os itens subsequentes.

- 65 Toda função não negativa é uma densidade de probabilidade.
- Se U for uma variável aleatória uniforme em [0, 1], então $x = \frac{-\ln(1-u)}{\lambda}, \ \lambda < 0, \ \ \text{terá distribuição exponencial com}$ parâmetro λ .
- 67 Se X for uma variável aleatória contínua com função de densidade f(x) definida no intervalo [a, d] e se a < b < c < d, então os axiomas de Kolmogorov garantirão que $\int_a^c f(x) \, dx + \int_b^d f(x) \, dx > \int_a^b f(x) \, dx + \int_c^d f(x) \, dx$.
- Considere que uma variável aleatória contínua e simétrica em zero tenha função densidade de probabilidade f(x) tal que $\int_{-k}^{0} f(x) dx \le 0 \le \int_{0}^{k} f(x) dx. \text{ Nesse caso, } P(X \in [-k; k]) = 0.$
- 69 Se P for uma variável aleatória beta com parâmetros (a, b) e se X for uma binomial com parâmetros N e P, então o produto de $f(P) \times P(X)$, em que f(P) é a função densidade de probabilidade de P e P(X) é a probabilidade de X, será proporcional à densidade de uma beta com parâmetros (a + X, b + N X).

De acordo com as probabilidades condicionais, julgue os itens que subsecutivos.

- **70** Se A, B e C forem eventos de modo que A e B e A e C sejam independentes, então $P(A \cap B \cap C) \neq P(A) \times P(B) \times P(C)$.
- 71 A probabilidade de uma empregada doméstica ter carteira assinada e receber vale-transporte não pode ser superior à probabilidade de ela receber vale-transporte.

Considerando o conceito de distribuição de probabilidade, julgue os itens de 72 a 78.

- 72 A fórmula de Bayes $P(A|B) = \frac{P(B|A) \ P(A)}{P(B)}$ é uma consequência da definição de probabilidade condicional.
- 73 A função $P(x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{2(x!)} & x \ge 0\\ \frac{p(1-p)^{-x}}{2} & x < 0 \end{cases}$ é uma probabilidade

válida para uma variável aleatória discreta $X \in \mathbb{Z}$.

- 74 Considere que, em um tribunal, os processos sejam classificados como urgentes (T1) e não urgentes (T2) e que os não urgentes sejam reclassificados como importantes (T2.1) ou não importantes (T2.2). Considere-se, ainda, que a proporção de processos do tipo T1 seja 0,5 e que, entre os processos do tipo T2, 0,2 sejam do tipo T2.1 e 0,8 do tipo T2.2. Se X, Y e Z forem, respectivamente, as contagens de processos de tipos T1, T2.1 e T2.2 em determinado momento, então a distribuição conjunta de (X, Y, Z) é uma multinomial com parâmetros 0,5, 0,1 e 0,4.
- 75 Os axiomas de Kolmogorov afirmam que a probabilidade da união de eventos é igual à soma das respectivas probabilidades.
- 76 Todos os eventos independentes são disjuntos.

- 77 A distribuição discreta cuja função de probabilidade acumulada seja $F(x)=\frac{x-a}{b-a}, \quad a\leq x\leq b$ somente será válida se a>0.
- Em uma variável aleatória $x \in [-1,1]$, na qual a função de probabilidade acumulada seja $F(x) = \begin{cases} \frac{x}{3} + c & x \ge 0 \\ \frac{x+1}{3} & x < 0 \end{cases}$

a probabilidade de X = 0 é superior a 1/4.

No que concerne a união e intersecção de eventos, julgue os itens que se seguem.

- 79 Considerem os eventos A e B, tais que $P(A|B) = k \cdot P(B|A)$. Nesse caso, se $P(B) = \frac{1}{3}$, então k > 3.
- 80 Se P(A|B) + P(B|A) = 0 e P(A) > 0, P(B) > 0, então $P(A \cap B) = 0$.
- 81 Considerando que a desigualdade de Bonferroni estabelece que $P(A \cap B) \ge P(A) + P(B) 1$. Assim, se $P(A \cup B) < P(A \cap B)$ então $P(A \cap B) < \frac{1}{2}$.
- 82 Considere uma amostra de tamanho 3, X_1 , X_2 , X_3 dependentes tal que $V\left(\sum_{i=1}^3 X_i\right) = \sum_{i=1}^3 V(X_i)$ e $Cov(X_2, X_3) < 0$. Então, $|Cov(X_1, X_2) + Cov(X_1, X_3)| > 0$.
- 83 A função $f(x) = \frac{x^{\circ}}{\omega}$ definida em [-1, 1] em que $\emptyset \in \mathbb{Z}^+$ e $\omega > 0$ é uma constante, será uma densidade de probabilidade apenas se $\emptyset = 2k, K \in \mathbb{Z}^+$.
- 84 Considerem os eventos A = "trabalhador recebe mais que um salário mínimo" e B = "o trabalhador é do sexo feminino". Nesse contexto, se a probabilidade de, em uma população, uma pessoa escolhida ao acaso ser um homem que recebe até um salário mínimo é 1/3, então a probabilidade de uma pessoa selecionada ao acaso ser do sexo feminino ou receber mais que um salário mínimo é superior a 1/2.
- 85 Considerem-se os eventos A, B e C, tais que $P(A \cup B \cup C) \le P(A) + P(B) P(AB) P(AC) P(BC)$. Nesse caso, P(ABC) = 0.

Um estudo sobre a informalidade no mercado de trabalho mostrou que o número X de empregados não registrados por microempresa segue uma distribuição binomial negativa na forma $P(X=k)=(k+1)p^2(1-p)^k$, em que k=0,1,2,... e o parâmetro p dessa distribuição é tal que 0 . Com base nessas informações

e considerando a média amostral $\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$ em que X_1, X_2, \dots, X_n representa uma amostra aleatória simples retirada dessa distribuição, julgue os itens a seguir.

- 86 A razão $\frac{2}{\overline{X}+2}$ é um estimador do parâmetro p obtido utilizando-se o método dos momentos.
- 87 À medida que o tamanho da amostra aumenta, a média \overline{X} converge quase certamente para uma distribuição normal padrão.
- 88 De acordo com o método de mínimos quadrados ordinários, a média amostral \bar{X} é o estimador do parâmetro p.
- 89 Se f_0 representar a frequência relativa de casos na amostra em que $X_i = 0$, para i = 1, 2, ..., n, então $\sqrt{f_0}$ será um estimador para o parâmetro p.
- 90 O estimador de máxima verossimilhança da média populacional é \overline{X} .
- **91** A média amostral é um estimador não tendencioso para a média populacional de empregados não registrados por microempresas.
- 92 O erro padrão de \overline{X} é igual a $\frac{\sqrt{2(1-p)}}{p}$.

Y	0	1	2	3	4	total
frequência	50	35	10	5	0	100

Considerando que o número mensal Y de acidentes de trabalho siga uma distribuição de Poisson com média m e que a tabela acima apresente a realização de uma amostra aleatória simples de tamanho n = 100, retirada da população Y, julgue os itens subsecutivos.

- 93 Considerando-se o estimador não viciado uniformemente de mínima variância (*uniformly minimum-variance unbiased estimator*), infere-se que P(Y=0) é igual a 0.99^{70} .
- 94 Considerando-se o princípio da máxima verossimilhança, infere-se que a estimativa da probabilidade P(Y > 4) é nula.
- As frequências relativas 0,5; 0,35; 0,10 e 0,05 são estimativas não viciadas das probabilidades P(Y=0), P(Y=1), P(Y=2) e P(Y=3), respectivamente.
- 96 A estimativa de máxima verossimilhança da probabilidade P(Y=0) é igual a 0,50.
- 97 Por máxima verossimilhança, estima-se que o valor de *m* seja igual a 0,7.
- **98** Estima-se que variância da distribuição *Y*, utilizando-se o método da máxima verossimilhança, seja igual a 0,7.
- 99 O erro padrão do estimador de máxima verossimilhança da probabilidade P(Y=1) é igual a $\sqrt{me^{-m}(1-me^{-m})}$.

Considerando que as propriedades da estatística $\overline{T}=a_1X_1+a_2X_2+...+a_nX_n$, em que $X_1,X_2,...,X_n$ representa uma amostra aleatória simples de tamanho n, retirada de uma população X com média μ , e que $a_1,a_2,...,a_n$, são constantes positivas tais que $a_1+a_2+...+a_n=1$, julgue os itens que se seguem.

- 100 Se X seguir uma distribuição exponencial, então \overline{T} será o estimador não viciado uniformemente de mínima variância (*uniformly minimum-variance unbiased estimator*) para qualquer coleção de constantes positivas $a_1, a_2, ..., a_n$, tais que $a_1 + a_2 + ... + a_n = 1$.
- 101 O erro padrão da estatística \overline{T} é igual a σ/\sqrt{n} , em que σ representa o desvio padrão da população X.
- 102 Se $a_1 < a_2 < ... < a_n$, então a estatística \overline{T} será um estimador tendencioso da média populacional μ .
- 103 Na situação em que X seja a distribuição de Bernoulli e as constantes, tais que $a_1 = a_2 = ... = a_n$, a estatística $n\overline{T}$ possuirá uma propriedade que se denomina suficiência.

	estimativa	erro padrão	<i>p</i> -valor
intercepto	400	40	< 0,001
coeficiente angular	1	0,2	< 0,001

Um modelo de regressão linear simples foi ajustado pelo método de mínimos quadrados ordinários como parte de um laudo de avaliação imobiliária. Nesse modelo, cujos resultados se encontram na tabela acima, a variável resposta — y — representa o valor do imóvel, em R\$ mil, e a variável regressora — x — é a área construída do imóvel (em m^2).

Considerando que o tamanho da amostra para essa modelagem tenha sido superior a 500 e que os erros aleatórios pertinentes sejam normais, julgue os itens a seguir.

- 104 Em relação ao teste de hipóteses H_0 : $\alpha = 0$ versus H_1 : $\alpha \neq 0$, em que α representa o intercepto, a hipótese nula deve ser rejeitada caso se adote o nível de significância de 1%.
- 105 A correlação entre o valor do imóvel e a área construída do imóvel é igual a 1.
- 106 Os resultados apresentados na tabela sugerem um bom ajuste, já que as estimativas dos coeficientes foram todas significativas com *p*-valores inferiores a 0,1%.
- 107 A razão t do teste de hipóteses H_0 : $\beta = 0$ versus H_1 : $\beta \neq 0$, em que β representa o coeficiente angular, é igual a 0,2.
- 108 A distribuição amostral do estimador do coeficiente angular se relaciona com uma distribuição *t* de Student com 498 graus de liberdade.
- 109 Com 95% de confiança, a estimativa intervalar para o coeficiente angular é, aproximadamente, igual a 1.0 ± 0.2 .
- 110 O modelo ajustado foi y = x + 400, o que sugere que cada metro quadrado eleva, em média, R\$ 1 mil no valor do imóvel.
- 111 Caso se faça um ajustamento utilizando-se o método da máxima verossimilhança, a estimativa do coeficiente angular sofrerá alteração e a do intercepto permanecerá a mesma.

Um modelo de regressão linear múltipla, que foi ajustado em uma perícia judicial, possui 11 variáveis explicativas. O tamanho da amostra nessa modelagem foi igual a 101. A soma de quadrados total foi igual a 15.000 e a soma de quadrados residual foi igual a 5.000. Com base nessas informações, julgue os próximos itens.

- 112 A variância amostral da variável dependente é igual a 150.
- 113 O quadrado médio dos erros (mse) é superior a 50.
- 114 O coeficiente de determinação R^2 do modelo de regressão linear múltipla é superior a 70%.
- 115 A soma de quadrados do modelo de regressão é inferior a 12.000.

região	quantidade anual de mandados	desvio padrão populacional do tempo gasto (em dias), por região
A	90.000	5
В	50.000	10
С	10.000	15
total	150.000	S

Um levantamento estatístico por amostragem probabilística foi realizado para se estimar o tempo médio, em dias, gasto por oficiais de justiça no cumprimento de mandados judiciais. Nesse levantamento, os mandados foram divididos de acordo com a localização geográfica do intimado. A tabela acima mostra a quantidade anual de mandados para cada região, os valores dos desvios padrão da variável de interesse por região e S, que representa o desvio padrão populacional do tempo gasto.

Considerando que o total de mandados judiciais utilizados no levantamento tenha sido igual a 400, julgue os itens de **116** a **120**.

- 116 O desvio padrão populacional S é igual a 10 dias.
- 117 A população-alvo ou o universo inicial de interesse é constituído pelos oficiais de justiça que cumpriram os mandados nas regiões *A*, *B* e *C* na ocasião desse levantamento estatístico.
- 118 Na amostragem aleatória estratificada com alocação uniforme, o total de observações na região C foi igual ou superior a 160.
- 119 Caso seja retirada uma amostra aleatória simples dessa população, ignorando-se a divisão por localização geográfica, o erro padrão do tempo médio amostral será igual a S/20 dias.
- 120 Considerando-se a amostragem aleatória estratificada com alocação proporcional ao tamanho dos estratos, a quantidade de observações no estrato *A* será igual a 240.

PROVA DISCURSIVA

- Nesta prova, faça o que se pede, usando, caso deseje, o espaço para rascunho indicado no presente caderno. Em seguida, transcreva
 o texto para a FOLHA DE TEXTO DEFINITIVO DA PROVA DISCURSIVA, no local apropriado, pois não será avaliado
 fragmento de texto escrito em local indevido.
- Qualquer fragmento de texto além da extensão máxima de linhas disponibilizadas será desconsiderado.
- Na folha de texto definitivo, identifique-se apenas no cabeçalho da primeira página, pois não será avaliado texto que tenha qualquer assinatura ou marca identificadora fora do local apropriado.
- Ao domínio do conteúdo serão atribuídos até **20,00 pontos**, dos quais até **1,00 ponto** será atribuído ao quesito apresentação (legibilidade, respeito às margens e indicação de parágrafos) e estrutura textual (organização das ideias em texto estruturado).

Um indicador que permite avaliar a qualidade dos serviços prestados por uma instituição segue uma distribuição contínua cuja função de densidade é

$$f(x) = \frac{\theta c^{\theta}}{x^{\theta + 1}},$$

em que x > c e $\theta > 2$. Uma amostra aleatória simples $X_1, X_2, ..., X_n$ foi retirada dessa distribuição com o propósito de se estimar o parâmetro θ .

Com base nessas informações, discorra sobre os métodos de estimação pontual, abordando, necessariamente, os seguintes aspectos:

- ► conceito de método de momentos e sua aplicação na situação apresentada; [valor: 9,50 pontos]
- ritério da máxima verossimilhança, suas propriedades ótimas e aplicação à situação apresentada. [valor: 9,50 pontos]

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

CespeUnB Centro de Seleção e de Promoção de Eventos